\begin{tabbing} sendMinimalR\=\{\$a:ut2, \$tg:ut2\}\+ \\[0ex]($T$; $l$; ${\it ds}_{1}$; ${\it ds}_{2}$; $P$; $Q$; $f$) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$$\oplus$(\=[\=at src($l$):\+\+ \\[0ex]action \$a(m) \\[0ex]p\=recondition $\lambda$$s$,$m$. $\neg$$P$($s$,$m$) \& ($\forall$$n$:$\mathbb{N}$. $n$$<$$m$ $\Rightarrow$ $P$($s$,$n$))\+ \\[0ex]sends [\$tg,$f$] on link $l$ \-\-\\[0ex]; \=at src(lnk{-}inv($l$)):\+ \\[0ex]action \$a(m) \\[0ex]p\=recondition $\lambda$$s$,$m$. $\neg$$Q$($s$,$m$) \& ($\forall$$n$:$\mathbb{N}$. $n$$<$$m$ $\Rightarrow$ $Q$($s$,$n$))\+ \\[0ex]sends [\$tg,$\lambda$$s$,$m$. $m$] on link lnk{-}inv($l$)]) \-\-\- \end{tabbing}